REFLECT

- 1a. In what way are these two methods for solving equations similar?
- **1b.** To solve an equation, you isolate the variable by performing _____ operations in the _____ order from the order in which they are applied to the variable in the original equation.

2 EXPLORE Solving Two-Step Equations that Contain Fractions

Use a table to help you solve each equation.

A
$$22 = \frac{n}{4} + 7$$

USEE	OPP.
Operations in the Equation	To Solve
1. First n is DIVIDED BY 4.	1. First SUBPLACE 7 on both sides of the equation.
2. Then, ADDED BY 7	2. Then Multiply both sides by 4.

Solution

$$22 = \frac{n}{4} + 7$$

$$22 - 7 = \frac{n}{4} + 7 - 7$$

$$15 \cancel{4} = \frac{n}{4} \cancel{4}$$

$$0 = n$$

$$\begin{array}{c|c} \mathbf{B} & \frac{2x}{3} = 12 \end{array}$$

Operations in the Equation	To Solve
1. First x is Multiplied by 2	1. First Multiply both sides by 3.
2. Then, divided / by 3	2. Then <u>dlv tole</u> both sides by <u>2</u> .

Solution

$$\frac{2x}{3} = 12$$

$$\frac{2x}{3}$$
 (3)= 12 (3)

$$2x + 2 = 36 + 2$$
$$x = 18$$

TRY THIS!

Solve each equation.

2a.
$$\frac{x}{3} + 10 = 40$$

2b.
$$\frac{x}{2} - 9 = 4$$

2c.
$$\frac{2x}{5} = 6$$